Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Immunogenetics ; 72(5): 305-314, 2020 07.
Article in English | MEDLINE | ID: mdl-32556499

ABSTRACT

Several genetic studies have implicated genes that encode for components of the innate immune response in tuberculosis (TB) susceptibility. The complement system is an early player in the innate immune response and provides the host with initial protection by promoting phagocytosis of apoptotic or necrotic cells. The C1q molecule is the first component of the classical pathway that leads to the activation of complement by binding to immune complexes and is encoded by the C1Q gene cluster. We investigated variants in this region to determine its association with TB susceptibility. Five single nucleotide polymorphisms (SNPs) (rs12033074, rs631090, rs172378, rs587585, and rs665691) were genotyped using TaqMan® SNP assays in 456 TB cases and 448 healthy controls and analysed by logistic regression models. The rs587585 variant showed a significant additive allelic association where the minor G allele was found more frequently in TB cases than in controls in both the discovery (p = 0.023; OR = 1.30; 95% CI, 1.04-1.64) and validation cohort (p = 0.038; OR = 1.31; 95% CI, 1.22-1.40). In addition, we detected increased C1qA expression when comparing cases and controls (p = 0.037) and linked this to a dosage effect of the G allele, which increased C1qA expression in TB cases. This is the first study to report the association of C1Q gene polymorphisms with progression to tuberculosis.


Subject(s)
Complement C1q/genetics , Complement C1q/metabolism , Genetic Predisposition to Disease/genetics , Tuberculosis/genetics , Adult , Alleles , Black People/genetics , Case-Control Studies , Female , Genetic Association Studies , Genotype , Humans , Male , Middle Aged , Multigene Family , Polymorphism, Single Nucleotide , Tuberculosis/immunology , Young Adult
2.
PLoS One ; 13(8): e0200632, 2018.
Article in English | MEDLINE | ID: mdl-30067763

ABSTRACT

OBJECTIVE: To investigate the distribution of Mycobacterium tuberculosis genotypes across Africa. METHODS: The SITVIT2 global repository and PUBMED were searched for spoligotype and published genotype data respectively, of M. tuberculosis from Africa. M. tuberculosis lineages in Africa were described and compared across regions and with those from 7 European and 6 South-Asian countries. Further analysis of the major lineages and sub-lineages using Principal Component analysis (PCA) and hierarchical cluster analysis were done to describe clustering by geographical regions. Evolutionary relationships were assessed using phylogenetic tree analysis. RESULTS: A total of 14727 isolates from 35 African countries were included in the analysis and of these 13607 were assigned to one of 10 major lineages, whilst 1120 were unknown. There were differences in geographical distribution of major lineages and their sub-lineages with regional clustering. Southern African countries were grouped based on high prevalence of LAM11-ZWE strains; strains which have an origin in Portugal. The grouping of North African countries was due to the high percentage of LAM9 strains, which have an origin in the Eastern Mediterranean region. East African countries were grouped based on Central Asian (CAS) and East-African Indian (EAI) strain lineage possibly reflecting historic sea trade with Asia, while West African Countries were grouped based on Cameroon lineage of unknown origin. A high percentage of the Haarlem lineage isolates were observed in the Central African Republic, Guinea, Gambia and Tunisia, however, a mixed distribution prevented close clustering. CONCLUSIONS: This study highlighted that the TB epidemic in Africa is driven by regional epidemics characterized by genetically distinct lineages of M. tuberculosis. M. tuberculosis in these regions may have been introduced from either Europe or Asia and has spread through pastoralism, mining and war. The vast array of genotypes and their associated phenotypes should be considered when designing future vaccines, diagnostics and anti-TB drugs.


Subject(s)
Genotype , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , Africa/epidemiology , Cluster Analysis , Databases, Factual , Demography , Humans , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/isolation & purification , Phylogeny , Principal Component Analysis , Tuberculosis/epidemiology
3.
J Proteome Res ; 16(10): 3841-3851, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28820946

ABSTRACT

Mycobacterium tuberculosis consists of a large number of different strains that display unique virulence characteristics. Whole-genome sequencing has revealed substantial genetic diversity among clinical M. tuberculosis isolates, and elucidating the phenotypic variation encoded by this genetic diversity will be of the utmost importance to fully understand M. tuberculosis biology and pathogenicity. In this study, we integrated whole-genome sequencing and mass spectrometry (GeLC-MS/MS) to reveal strain-specific characteristics in the proteomes of two clinical M. tuberculosis Latin American-Mediterranean isolates. Using this approach, we identified 59 peptides containing single amino acid variants, which covered ∼9% of all coding nonsynonymous single nucleotide variants detected by whole-genome sequencing. Furthermore, we identified 29 distinct peptides that mapped to a hypothetical protein not present in the M. tuberculosis H37Rv reference proteome. Here, we provide evidence for the expression of this protein in the clinical M. tuberculosis SAWC3651 isolate. The strain-specific databases enabled confirmation of genomic differences (i.e., large genomic regions of difference and nonsynonymous single nucleotide variants) in these two clinical M. tuberculosis isolates and allowed strain differentiation at the proteome level. Our results contribute to the growing field of clinical microbial proteogenomics and can improve our understanding of phenotypic variation in clinical M. tuberculosis isolates.


Subject(s)
Mycobacterium tuberculosis/genetics , Peptides/genetics , Proteogenomics , Tuberculosis/genetics , Gene Expression Regulation, Bacterial/genetics , Genetic Variation/genetics , Genome, Bacterial/genetics , Humans , Mycobacterium tuberculosis/pathogenicity , Peptides/isolation & purification , Tandem Mass Spectrometry , Tuberculosis/drug therapy , Tuberculosis/microbiology
4.
Microb Pathog ; 100: 268-275, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27744102

ABSTRACT

The ESX-1 gene cluster, encoding the Type-VII secretion (T7S) system and its virulence associated proteins, ESAT-6 and CFP-10, is thought to be responsible for the transport of extracellular proteins across the hydrophobic and highly impermeable, cell envelope of Mycobacterium, and is involved in virulence in Mycobacterium tuberculosis, the causative agent of tuberculosis. Using a GCxGC-TOFMS metabolomics approach, a M. smegmatis ESX-1 knock-out strain (ΔESX-1ms) was compared to that of the M. smegmatis wild-type parent strain, and the metabolite markers due to the presence or absence of the ESX-1 gene cluster were identified. A general increase in specific metabolites in the ΔESX-1ms, confirmed the roles previously described for ESX-1 in mycolic acid biosynthesis and cell wall integrity. However, a number of other metabolite markers identified indicates ESX-1 has an additional role the in cell envelope structure, altering the levels of antioxidants and energy metabolism. Furthermore, the metabolome profiles correlated with the metabolomic variation observed when comparing a hyper- and hypo-virulent Beijing strain of M. tuberculosis, suggesting that the pathways which modulate virulence in M. tuberculosis are also influenced by ESX-1, reaffirming the previously described association of ESX-1 with virulence and cell envelope biogenesis.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Biological Products/analysis , Metabolomics , Multigene Family , Mycobacterium tuberculosis/metabolism , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Gene Knockout Techniques , Mycobacterium tuberculosis/genetics
5.
Front Microbiol ; 7: 795, 2016.
Article in English | MEDLINE | ID: mdl-27375559

ABSTRACT

The Esx and PE/PPE families of proteins are among the most immunodominant mycobacterial antigens and have thus been the focus of research to develop vaccines and immunological tests for diagnosis of bovine and human tuberculosis, mainly caused by Mycobacterium bovis and Mycobacterium tuberculosis, respectively. In non-tuberculous mycobacteria (NTM), multiple copies of genes encoding homologous proteins have mainly been identified in pathogenic Mycobacterium species phylogenically related to Mycobacterium tuberculosis and Mycobacterium bovis. Only ancestral copies of these genes have been identified in nonpathogenic NTM species like Mycobacterium smegmatis, Mycobacterium sp. KMS, Mycobacterium sp. MCS, and Mycobacterium sp. JLS. In this study we elucidated the genomes of four nonpathogenic NTM species, viz Mycobacterium komanii sp. nov., Mycobacterium malmesburii sp. nov., Mycobacterium nonchromogenicum, and Mycobacterium fortuitum ATCC 6841. These genomes were investigated for genes encoding for the Esx and PE/PPE (situated in the esx cluster) family of proteins as well as adjacent genes situated in the ESX-1 to ESX-5 regions. To identify proteins actually expressed, comparative proteomic analyses of purified protein derivatives from three of the NTM as well as Mycobacterium kansasii ATCC 12478 and the commercially available purified protein derivatives from Mycobacterium bovis and Mycobacterium avium was performed. The genomic analysis revealed the occurrence in each of the four NTM, orthologs of the genes encoding for the Esx family, the PE and PPE family proteins in M. bovis and M. tuberculosis. The identification of genes of the ESX-1, ESX-3, and ESX-4 region including esxA, esxB, ppe68, pe5, and pe35 adds to earlier reports of these genes in nonpathogenic NTM like M. smegmatis, Mycobacterium sp. JLS and Mycobacterium KMS. This report is also the first to identify esxN gene situated within the ESX-5 locus in M. nonchromogenicum. Our proteomics analysis identified a total of 609 proteins in the six PPDs and 22 of these were identified as shared between PPD of M.bovis and one or more of the NTM PPDs. Previously characterized M tuberculosis/M. bovis homologous immunogenic proteins detected in one or more of the nonpathogenic NTM in this study included CFP-10 (detected in M. malmesburii sp. nov. PPD), GroES (detected in all NTM PPDs but M. malmesburii sp. nov.), DnaK (detected in all NTM PPDs), and GroEL (detected in all NTM PPDs). This study confirms reports that the ESX-1, ESX-3, and ESX-4 regions are ancestral regions and thus found in the genomes of most mycobacteria. Identification of NTM homologs of immunogenic proteins warrants further investigation of their ability to cause cross-reactive immune responses with MTBC antigens.

6.
BMC Genomics ; 17: 151, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26923687

ABSTRACT

BACKGROUND: Approximately 10% of the Mycobacterium tuberculosis genome is made up of two families of genes that are poorly characterized due to their high GC content and highly repetitive nature. The PE and PPE families are typified by their highly conserved N-terminal domains that incorporate proline-glutamate (PE) and proline-proline-glutamate (PPE) signature motifs. They are hypothesised to be important virulence factors involved with host-pathogen interactions, but their high genetic variability and complexity of analysis means they are typically disregarded in genome studies. RESULTS: To elucidate the structure of these genes, 518 genomes from a diverse international collection of clinical isolates were de novo assembled. A further 21 reference M. tuberculosis complex genomes and long read sequence data were used to validate the approach. SNP analysis revealed that variation in the majority of the 168 pe/ppe genes studied was consistent with lineage. Several recombination hotspots were identified, notably pe_pgrs3 and pe_pgrs17. Evidence of positive selection was revealed in 65 pe/ppe genes, including epitopes potentially binding to major histocompatibility complex molecules. CONCLUSIONS: This, the first comprehensive study of the pe and ppe genes, provides important insight into M. tuberculosis diversity and has significant implications for vaccine development.


Subject(s)
Genes, Bacterial , Multigene Family , Mycobacterium tuberculosis/genetics , Polymorphism, Single Nucleotide , Recombination, Genetic , DNA, Bacterial/genetics , Evolution, Molecular , Genome, Bacterial , Genomics/methods , Genotype , Mutation , Phylogeny , Selection, Genetic , Sequence Analysis, DNA
7.
Biomed Res Int ; 2015: 959107, 2015.
Article in English | MEDLINE | ID: mdl-26180817

ABSTRACT

BACKGROUND: The clinical relevance of nontuberculous mycobacteria (NTM), detected by liquid more than solid culture in sputum specimens from a South African mining workforce, is uncertain. We aimed to describe the current spectrum and relevance of NTM in this population. METHODS: An observational study including individuals with sputum NTM isolates, recruited at workforce tuberculosis screening and routine clinics. Symptom questionnaires were administered at the time of sputum collection and clinical records and chest radiographs reviewed retrospectively. RESULTS: Of 232 individuals included (228 (98%) male, median age 44 years), M. gordonae (60 individuals), M. kansasii (50), and M. avium complex (MAC: 38) were the commonest species. Of 38 MAC isolates, only 2 (5.3%) were from smear-positive sputum specimens and 30/38 grew in liquid but not solid culture. MAC was especially prevalent among symptomatic, HIV-positive individuals. HIV prevalence was high: 57/74 (77%) among those tested. No differences were found in probability of death or medical separation by NTM species. CONCLUSIONS: M. gordonae, M. kansasii, and MAC were the commonest NTM among miners with suspected tuberculosis, with most MAC from smear-negative specimens in liquid culture only. HIV testing and identification of key pathogenic NTM in this setting are essential to ensure optimal treatment.


Subject(s)
Gold , HIV Infections/microbiology , Miners , Mining , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria/isolation & purification , Sputum/microbiology , Adult , HIV Infections/epidemiology , Humans , Male , Middle Aged , Mycobacterium Infections, Nontuberculous/epidemiology , Prevalence , South Australia/epidemiology
8.
Front Microbiol ; 6: 6, 2015.
Article in English | MEDLINE | ID: mdl-25713560

ABSTRACT

Reversible protein phosphorylation, regulated by protein kinases and phosphatases, mediates a switch between protein activity and cellular pathways that contribute to a large number of cellular processes. The Mycobacterium tuberculosis genome encodes 11 Serine/Threonine kinases (STPKs) which show close homology to eukaryotic kinases. This study aimed to elucidate the phosphoproteomic landscape of a clinical isolate of M. tuberculosis. We performed a high throughput mass spectrometric analysis of proteins extracted from an early-logarithmic phase culture. Whole cell lysate proteins were processed using the filter-aided sample preparation method, followed by phosphopeptide enrichment of tryptic peptides by strong cation exchange (SCX) and Titanium dioxide (TiO2) chromatography. The MaxQuant quantitative proteomics software package was used for protein identification. Our analysis identified 414 serine/threonine/tyrosine phosphorylated sites, with a distribution of S/T/Y sites; 38% on serine, 59% on threonine and 3% on tyrosine; present on 303 unique peptides mapping to 214 M. tuberculosis proteins. Only 45 of the S/T/Y phosphorylated proteins identified in our study had been previously described in the laboratory strain H37Rv, confirming previous reports. The remaining 169 phosphorylated proteins were newly identified in this clinical M. tuberculosis Beijing strain. We identified 5 novel tyrosine phosphorylated proteins. These findings not only expand upon our current understanding of the protein phosphorylation network in clinical M. tuberculosis but the data set also further extends and complements previous knowledge regarding phosphorylated peptides and phosphorylation sites in M. tuberculosis.

9.
Emerg Infect Dis ; 19(12): 2004-7, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24274183

ABSTRACT

The organism that causes tuberculosis in meerkats (Suricata suricatta) has been poorly characterized. Our genetic analysis showed it to be a novel member of the Mycobacterium tuberculosis complex and closely related to the dassie bacillus. We have named this epidemiologically and genetically unique strain M. suricattae.


Subject(s)
Herpestidae/microbiology , Mycobacterium/classification , Mycobacterium/genetics , Tuberculosis/veterinary , Animals , Genes, Bacterial , Molecular Typing , Mycobacterium/isolation & purification , Sequence Analysis, DNA , South Africa
10.
PLoS One ; 8(8): e70919, 2013.
Article in English | MEDLINE | ID: mdl-24058399

ABSTRACT

BACKGROUND: South Africa shows one of the highest global burdens of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB). Since 2002, MDR-TB in South Africa has been treated by a standardized combination therapy, which until 2010 included ofloxacin, kanamycin, ethionamide, ethambutol and pyrazinamide. Since 2010, ethambutol has been replaced by cycloserine or terizidone. The effect of standardized treatment on the acquisition of XDR-TB is not currently known. METHODS: We genetically characterized a random sample of 4,667 patient isolates of drug-sensitive, MDR and XDR-TB cases collected from three South African provinces, namely, the Western Cape, Eastern Cape and KwaZulu-Natal. Drug resistance patterns of a subset of isolates were analyzed for the presence of commonly observed resistance mutations. RESULTS: Our analyses revealed a strong association between distinct strain genotypes and the emergence of XDR-TB in three neighbouring provinces of South Africa. Strains predominant in XDR-TB increased in proportion by more than 20-fold from drug-sensitive to XDR-TB and accounted for up to 95% of the XDR-TB cases. A high degree of clustering for drug resistance mutation patterns was detected. For example, the largest cluster of XDR-TB associated strains in the Eastern Cape, affecting more than 40% of all MDR patients in this province, harboured identical mutations concurrently conferring resistance to isoniazid, rifampicin, pyrazinamide, ethambutol, streptomycin, ethionamide, kanamycin, amikacin and capreomycin. CONCLUSIONS: XDR-TB associated genotypes in South Africa probably were programmatically selected as a result of the standard treatment regimen being ineffective in preventing their transmission. Our findings call for an immediate adaptation of standard treatment regimens for M/XDR-TB in South Africa.


Subject(s)
Antitubercular Agents/pharmacology , Drug Resistance, Multiple , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/microbiology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Antitubercular Agents/therapeutic use , Extensively Drug-Resistant Tuberculosis/epidemiology , Genotype , Humans , Mycobacterium tuberculosis/isolation & purification , South Africa/epidemiology
11.
PLoS One ; 8(7): e70178, 2013.
Article in English | MEDLINE | ID: mdl-23936157

ABSTRACT

BACKGROUND: Molecular genotyping methods have shown infection with more than one Mycobacterium tuberculosis strain genotype in a single sputum culture, indicating mixed infection. AIM: This study aimed to develop a PCR-based genotyping tool to determine the population structure of M. tuberculosis strain genotypes in primary Mycobacterial Growth Indicator Tubes (MGIT) and Löwenstein-Jensen (LJ) cultures to identify mixed infections and to establish whether the growth media influenced the recovery of certain strain genotypes. METHOD: A convenience sample of 206 paired MGIT and LJ M. tuberculosis cultures from pulmonary tuberculosis patients resident in Khayelitsha, South Africa were genotyped using an in-house PCR-based method to detect defined M. tuberculosis strain genotypes. RESULTS: The sensitivity and specificity of the PCR-based method for detecting Beijing, Haarlem, S-family, and LAM genotypes was 100%, and 75% and 50% for detecting the Low Copy Clade, respectively. Thirty-one (15%) of the 206 cases showed the presence of more than one M. tuberculosis strain genotype. Strains of the Beijing and Haarlem genotypes were significantly more associated with a mixed infection (on both media) when compared to infections with a single strain (Beijing MGIT p = 0.02; LJ, p<0.01) and (Haarlem: MGIT p<0.01; LJ, p = 0.01). Strains with the Beijing genotype were less likely to be with "other genotype" strains (p<0.01) while LAM, Haarlem, S-family and LCC occurred independently with the Beijing genotype. CONCLUSION: The PCR-based method was able to identify mixed infection in at least 15% of the cases. LJ media was more sensitive in detecting mixed infections than MGIT media, implying that the growth characteristics of M. tuberculosis on different media may influence our ability to detect mixed infections. The Beijing and Haarlem genotypes were more likely to occur in a mixed infection than any of the other genotypes tested suggesting pathogen-pathogen compatibility.


Subject(s)
Genotype , Mycobacterium tuberculosis/genetics , Tuberculosis, Pulmonary/microbiology , Coinfection , Cross-Sectional Studies , Culture Media , Humans , Mycobacterium tuberculosis/growth & development , Polymerase Chain Reaction , Sensitivity and Specificity , Sputum/microbiology , Tuberculosis, Pulmonary/diagnosis
12.
Tuberculosis (Edinb) ; 93(1): 60-74, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23017770

ABSTRACT

The genus Mycobacterium includes a variety of species with differing phenotypic properties, including growth rate, pathogenicity and environment- and host-specificity. Although many mycobacterial species have been extensively studied and their genomes sequenced, the reasons for phenotypic variation between closely related species remain unclear. Variation in gene expression may contribute to these characteristics and enable the bacteria to respond to changing environmental conditions. Gene expression is controlled primarily at the level of transcription, where the main element of regulation is the promoter. Transcriptional regulation and associated promoter sequences have been studied extensively in E. coli. This review describes the complex structure and characteristics of mycobacterial promoters, in comparison to the classical E. coli prokaryotic promoter structure. Some components of mycobacterial promoters are similar to those of E. coli. These include the predominant guanine residue at the transcriptional start point, conserved -10 hexamer, similar interhexameric distances, the use of ATG as a start codon, the guanine- and adenine-rich ribosome binding site and the presence of extended -10 (TGn) motifs in strong promoters. However, these components are much more variable in sequence in mycobacterial promoters and no conserved -35 hexamer sequence (clearly defined in E. coli) can be identified. This may be a result of the high G+C content of mycobacterial genomes, as well as the large number of sigma factors present in mycobacteria, which may recognise different promoter sequences. Mycobacteria possess a complex transcriptional regulatory network. Numerous regulatory motifs have been identified in mycobacterial promoters, predominantly in the interhexameric region. These are bound by specific transcriptional regulators in response to environmental changes. The combination of specific promoter sequences, transcriptional regulators and a variety of sigma factors enables rapid and specific responses to diverse conditions and different stages of infection. This review aims to provide an overview of the complex architecture of mycobacterial transcriptional regulation.


Subject(s)
Mycobacterium/genetics , Promoter Regions, Genetic , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Humans , Mycobacterium/physiology , Sigma Factor/genetics , Transcription, Genetic
13.
J Wildl Dis ; 48(4): 849-57, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23060486

ABSTRACT

Mycobacterium tuberculosis complex species cause tuberculosis disease in animals and humans. Although they share 99.9% similarity at the nucleotide level, several host-adapted ecotypes of the tubercule bacilli have been identified. In the wildlife setting, probably the most well-known member of this complex is Mycobacterium bovis, the causative agent of bovine tuberculosis. The recently described oryx bacillus is an extremely rare slow-growing member of the antelope clade of the M. tuberculosis complex and is closely related to the dassie bacillus, Mycobacterium africanum and Mycobacterium microti. The antelope clade is a group of strains apparently host adapted to antelopes, as most described infections were associated with deer and antelope, most specifically the Arabian oryx (Oryx leucoryx). In this study, oryx bacillus was isolated from a free-ranging adult female African buffalo (Syncerus caffer), in good physical condition, which tested strongly positive on three consecutive comparative intradermal tuberculin tests. Upon necropsy, a single pulmonary granuloma and an active retropharyngeal lymph node was found. Comprehensive molecular genetic assays were performed, which confirmed that the causative microorganism was not M. bovis but oryx bacillus. Oryx bacillus has never been reported in Southern Africa and has never been found to infect African buffalo. The identification of this microorganism in buffalo is an important observation in view of the large and ever-increasing epidemic of the closely related M. tuberculosis complex species M. bovis in some African buffalo populations in South Africa.


Subject(s)
Buffaloes/microbiology , Mycobacterium tuberculosis/classification , Phylogeny , Tuberculosis/veterinary , Animals , Bacterial Typing Techniques/veterinary , DNA, Bacterial/analysis , Female , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/pathogenicity , Polymorphism, Genetic , South Africa/epidemiology , Species Specificity , Tuberculosis/epidemiology , Tuberculosis/microbiology
15.
PLoS One ; 7(4): e30593, 2012.
Article in English | MEDLINE | ID: mdl-22496726

ABSTRACT

Mycobacterium tuberculosis complex (MTBC) genomes contain 2 large gene families termed pe and ppe. The function of pe/ppe proteins remains enigmatic but studies suggest that they are secreted or cell surface associated and are involved in bacterial virulence. Previous studies have also shown that some pe/ppe genes are polymorphic, a finding that suggests involvement in antigenic variation. Using comparative sequence analysis of 18 publicly available MTBC whole genome sequences, we have performed alignments of 33 pe (excluding pe_pgrs) and 66 ppe genes in order to detect the frequency and nature of genetic variation. This work has been supplemented by whole gene sequencing of 14 pe/ppe (including 5 pe_pgrs) genes in a cohort of 40 diverse and well defined clinical isolates covering all the main lineages of the M. tuberculosis phylogenetic tree. We show that nsSNP's in pe (excluding pgrs) and ppe genes are 3.0 and 3.3 times higher than in non-pe/ppe genes respectively and that numerous other mutation types are also present at a high frequency. It has previously been shown that non-pe/ppe M. tuberculosis genes display a remarkably low level of purifying selection. Here, we also show that compared to these genes those of the pe/ppe families show a further reduction of selection pressure that suggests neutral evolution. This is inconsistent with the positive selection pressure of "classical" antigenic variation. Finally, by analyzing such a large number of genes we were able to detect large differences in mutation type and frequency between both individual genes and gene sub-families. The high variation rates and absence of selective constraints provides valuable insights into potential pe/ppe function. Since pe/ppe proteins are highly antigenic and have been studied as potential vaccine components these results should also prove informative for aspects of M. tuberculosis vaccine design.


Subject(s)
Bacterial Proteins/metabolism , Genes, Bacterial , Genetic Variation , Genome, Bacterial , Mycobacterium tuberculosis/genetics , Selection, Genetic , Tuberculosis/genetics , Antigenic Variation , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Bacterial Proteins/immunology , Cohort Studies , DNA, Bacterial/genetics , Evolution, Molecular , Humans , Multigene Family , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/pathogenicity , Phylogeny , Sequence Analysis, DNA , Tuberculosis/immunology , Tuberculosis/microbiology
16.
Microb Drug Resist ; 18(2): 193-7, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21732736

ABSTRACT

The aminoglycosides amikacin (AMK)/kanamycin (KAN) and the cyclic polypeptide capreomycin (CAP) are important injectable drugs in the treatment of multidrug-resistant tuberculosis. Cross-resistance among these drug classes occurs and information on the minimum inhibitory concentrations (MICs), above the normal wild-type distribution, may be useful in identifying isolates that are still accessible to drug treatment. Isolates from the Eastern Cape Province of South Africa were subjected to DNA sequencing of the rrs (1400-1500 region) and tlyA genes. Sequencing data were compared with (i) conventional susceptibility testing at standard critical concentrations (CCs) on Middlebrook 7H11 agar and (ii) MGIT 960-based MIC determinations to assess the presence of AMK- and CAP-resistant mutants. Isolates with an rrs A1401G mutation showed high-level resistance to AMK (>20 mg/L) and decreased phenotypic susceptibility to CAP (MICs 10-15 mg/L). The MICs of CAP were below the bioavailability of the drug, which suggests that it may still be effective against multi- or extensively drug resistant tuberculosis [M(X)DR-TB]. Agar-based CC testing was found to be unreliable for resistance recognition of CAP in particular.


Subject(s)
Amikacin/pharmacology , Antitubercular Agents/pharmacology , Capreomycin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Mycobacterium tuberculosis/drug effects , RNA, Ribosomal, 16S/genetics , Bacterial Proteins/genetics , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/isolation & purification , Phenotype , Polymerase Chain Reaction , Sequence Analysis, DNA , South Africa , Tuberculosis, Multidrug-Resistant/microbiology
17.
Infect Genet Evol ; 12(4): 686-94, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21839855

ABSTRACT

Drug resistant tuberculosis (TB) has reached alarming proportions in South Africa, draining valuable resources that are needed to fight drug susceptible TB. It is currently estimated that 9.6% of all TB cases have multi-drug resistant (MDR)-TB, thereby ranking South Africa as one of the highest MDR-TB burden countries in the world. Molecular epidemiological studies have demonstrated the complexity of the epidemic and have clearly shown that the epidemic is driven by transmission as a consequence of low cases detection and diagnostic delay. The latter has in turn fueled the amplification of drug resistance, ultimately leading to the emergence of extensively drug resistant (XDR)-TB. Despite the introduction of new drugs to combat this scourge, culture conversion rates for XDR-TB remain below 20%. Failure to achieve cure may be explained from DNA sequencing results which have demonstrated mutations in 7 genes encoding resistance to at least 8 anti-TB drugs. This review shows how molecular epidemiology has provided novel insights into the MDR-TB epidemic in South Africa and thereby has highlighted the challenges that need to be addressed regarding the diagnosis and treatment of MDR-TB. An important step towards for curbing this epidemic will be collaboration between clinicians, laboratories and researchers to establish scientific knowledge and medical expertise to more efficiently guide public health policy.


Subject(s)
Antitubercular Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Tuberculosis, Multidrug-Resistant/drug therapy , Antitubercular Agents/pharmacology , Delayed Diagnosis , Extensively Drug-Resistant Tuberculosis/diagnosis , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Genotype , Humans , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Phylogeography , Practice Guidelines as Topic , South Africa/epidemiology , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/epidemiology
18.
Vet Immunol Immunopathol ; 142(1-2): 113-8, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21561669

ABSTRACT

African buffaloes (Syncerus caffer) are the most significant wildlife maintenance hosts of Mycobacterium bovis, the causative organism of bovine tuberculosis (BTB). Current diagnostic tests for the detection of M. bovis infection in free-ranging buffaloes have numerous limitations and we wished to evaluate a modification to a human TB assay, the QuantiFERON-TB Gold (In-Tube) assay (QFT), as a practical diagnostic test for BTB in buffaloes. One hundred and seventy-five buffaloes were tested using the single intradermal comparative tuberculin test (SICTT) and a modified QFT (mQFT). An appropriate cut-off point for the mQFT was derived from SICTT results using receiver operator characteristic curve analysis. Twenty-six SICTT-positive buffaloes were killed and subjected to necropsy, and selected tissues were processed for mycobacterial culture and speciation. An optimal cut-off point for the mQFT was calculated as 66pg/ml. The assay correctly detected 39/40 SICTT-positive buffaloes and 129/134 TST-negative buffaloes and M. bovis was cultured from 21/26 slaughtered SICTT/mQFT-positive animals. The mQFT shows promise as a practical test for M. bovis infection in buffaloes and shows a sensitivity and specificity at least similar to that of the TST.


Subject(s)
Buffaloes/microbiology , Mycobacterium bovis , Tuberculosis/veterinary , Animals , Buffaloes/immunology , Interferon-gamma/physiology , Reagent Kits, Diagnostic/veterinary , Sensitivity and Specificity , Tuberculin Test/veterinary , Tuberculosis/diagnosis , Tuberculosis/immunology , Tuberculosis/microbiology
19.
Am J Respir Crit Care Med ; 184(2): 269-76, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21512166

ABSTRACT

RATIONALE: Central dogma suggests that rifampicin resistance in Mycobacterium tuberculosis develops solely through rpoB gene mutations. OBJECTIVE: To determine whether rifampicin induces efflux pumps activation in rifampicin resistant M. tuberculosis strains thereby defining rifampicin resistance levels and reducing ofloxacin susceptibility. METHODS: Rifampicin and/or ofloxacin minimum inhibitory concentrations (MICs) were determined in rifampicin resistant strains by culture in BACTEC 12B medium. Verapamil and reserpine were included to determine their effect on rifampicin and ofloxacin susceptibility. RT-qPCR was applied to assess expression of efflux pump/transporter genes after rifampicin exposure. To determine whether verapamil could restore susceptibility to first-line drugs, BALB/c mice were infected with a MDR-TB strain and treated with first-line drugs with/without verapamil. MEASUREMENTS AND MAIN FINDINGS: Rifampicin MICs varied independently of rpoB mutation and genetic background. Addition reserpine and verapamil significantly restored rifampicin susceptibility (p = 0.0000). RT-qPCR demonstrated that rifampicin induced differential expression of efflux/transporter genes in MDR-TB isolates. Incubation of rifampicin mono-resistant strains in rifampicin (2 µg/ml) for 7 days induced ofloxacin resistance (MIC > 2 µg/ml) in strains with an rpoB531 mutation. Ofloxacin susceptibility was restored by exposure to efflux pump inhibitors. Studies in BALB/c mice showed that verapamil in combination with first-line drugs significantly reduced pulmonary CFUs after 1 and 2 months treatment (p < 0.05). CONCLUSION: Exposure of rifampicin resistant M. tuberculosis strains to rifampicin can potentially compromise the efficacy of the second-line treatment regimens containing ofloxacin, thereby emphasising the need for rapid diagnostics to guide treatment. Efflux pump inhibitors have the potential to improve the efficacy of anti-tuberculosis drug treatment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antibiotics, Antitubercular/pharmacology , Ofloxacin/pharmacology , Rifampin/pharmacology , Tuberculosis, Multidrug-Resistant/drug therapy , Adrenergic Uptake Inhibitors/pharmacology , Animals , Bacterial Proteins/drug effects , Bacterial Proteins/genetics , Calcium Channel Blockers/pharmacology , Cell Culture Techniques , DNA-Directed RNA Polymerases , Disease Models, Animal , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Reserpine/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Tuberculosis, Multidrug-Resistant/genetics , Verapamil/pharmacology
20.
Vet Microbiol ; 147(3-4): 340-5, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-20727687

ABSTRACT

Routine meat inspection of antelope carcasses from a South African game reserve revealed a high prevalence of tuberculosis-like lesions. This study aimed to identify the causative agent of this disease and to describe its pathological features. In total, 139 antelopes were randomly harvested from the game reserve and subjected to meat inspection. Of these animals, 46 (33%) showed gross visible, tuberculosis-like lesions. Histopathological examination revealed the presence of encapsulated necrogranulomas in organs and/or lymph nodes of 22 of 27 animals tested. Tissue samples from lesions were processed for both non-selective bacterial culture and mycobacterial culture following decontamination. In non-selective cultures of lesions from 25 of 31 animals tested, Corynebacterium pseudotuberculosis was detected. Isolation of C. pseudotuberculosis was closely associated with the presence of necrogranulomas. In mycobacterial cultures of lesions from 9 of 41 animals tested, different species of non-tuberculous mycobacteria (NTMs) were detected. In 5 instances, depending on the culture procedure that was applied, either C. pseudotuberculosis or NTMs were isolated from the same tissue sample. Our results suggest that the disease has been caused by infections with C. pseudotuberculosis. In sub-Saharan Africa, the role of pathogens other than Mycobacterium bovis may be underestimated in causing tuberculosis-like lesions. In cases where potentially pathogenic NTMs are isolated from mycobacterial cultures of tuberculosis-like lesions, the non-use of additional non-selective culture techniques could lead to misinterpretations of the diagnostic test results.


Subject(s)
Antelopes , Corynebacterium Infections/veterinary , Corynebacterium pseudotuberculosis/physiology , Mycobacterium Infections/veterinary , Mycobacterium/physiology , Tuberculosis/veterinary , Animals , Corynebacterium Infections/pathology , Corynebacterium pseudotuberculosis/isolation & purification , Mycobacterium/isolation & purification , Mycobacterium Infections/pathology , South Africa , Tuberculosis/microbiology , Tuberculosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...